Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 42 results ...

Afroz, R (2020) Developing a low-carbon architecture pedagogy in Bangladesh. Buildings and Cities, 1(01), 637–49.

Andersen, C E, Kanafani, K, Zimmermann, R K, Rasmussen, F N and Birgisdóttir, H (2020) Comparison of GHG emissions from circular and conventional building components. Buildings and Cities, 1(01), 379–92.

  • Type: Journal Article
  • Keywords: buildings; carbon metrics; circular economy; components; embodied carbon; life-cycle assessment; reuse;
  • ISBN/ISSN: 2632-6655
  • URL: https://doi.org/10.5334/bc.55
  • Abstract:
    The concept of circular economy has been introduced as a strategy to reduce the greenhouse gas (GHG) emissions from buildings and mitigate climate change. Although many innovative circular solutions exist, the business model is challenged by a lack of environmental data on the circular solutions, and thus the potential benefits are not verifiable. The study assesses the embodied GHG emissions of five circular building elements/components. Circular solutions are compared with conventional solutions to ascertain whether the business model has the potential to reduce GHG emissions. The GHG emissions are quantified using life-cycle assessment (LCA) for five circular-economy and three conventional building elements/components. The environmental data show that circular building components have the potential to reduce GHG emissions. However, there is a risk of increasing the GHG emissions when compared with conventional solutions, emphasising the need for standardised environmental data. Lastly, the study identifies logistic, economic, technological and regulatory barriers that prevent complete implementation of circular economy. Practice relevance Standardised environmental data on building elements/components are needed to support decision-making at local and national levels. Uncertainties about waste from manufacture and transport in the production stage can affect the environmental potential to such an extent that the benefits from introducing circular economy are lost. One central barrier is identified that prevents complete implementation of the circular economy in buildings; the industry is not geared to support a steady supply of some circular building elements/components. In general, it is clear that the implementation of circular economy requires the identification of environmental, logistical, economic, technological and regulatory concerns.

Anderson, J and Moncaster, A (2020) Embodied carbon of concrete in buildings, Part 1: analysis of published EPD. Buildings and Cities, 1(01), 198–217.

Axon, S and Morrissey, J (2020) Just energy transitions? Social inequities, vulnerabilities and unintended consequences. Buildings and Cities, 1(01), 393–411.

Baborska-Narozny, M, Szulgowska-Zgrzywa, M, Mokrzecka, M, Chmielewska, A, Fidorow-Kaprawy, N, Stefanowicz, E, Piechurski, K and Laska, M (2020) Climate justice: air quality and transitions from solid fuel heating. Buildings and Cities, 1(01), 120–40.

Balouktsi, M (2020) Carbon metrics for cities: production and consumption implications for policies. Buildings and Cities, 1(01), 233–59.

Bordass, B (2020) Metrics for energy performance in operation: the fallacy of single indicators. Buildings and Cities, 1(01), 260–76.

Clarke, L, Sahin-Dikmen, M and Winch, C (2020) Transforming vocational education and training for nearly zero-energy building. Buildings and Cities, 1(01), 650–61.

Crawley, J, McKenna, E, Gori, V and Oreszczyn, T (2020) Creating Domestic Building Thermal Performance Ratings Using Smart Meter Data. Buildings and Cities, 1(01), 1–13.

Fawcett, T and Topouzi, M (2020) Residential retrofit in the climate emergency: the role of metrics. Buildings and Cities, 1(01), 475–90.

Francart, N, Höjer, M, Mjörnell, K, Orahim, A S, von Platten, J and Malmqvist, T (2020) Sharing indoor space: stakeholders’ perspectives and energy metrics. Buildings and Cities, 1(01), 70–85.

Frischknecht, R, Alig, M, Nathani, C, Hellmüller, P and Stolz, P (2020) Carbon footprints and reduction requirements: the Swiss real estate sector. Buildings and Cities, 1(01), 325–36.

Grant, E J (2020) Mainstreaming environmental education for architects: the need for basic literacies. Buildings and Cities, 1(01), 538–49.

Green, E, Lannon, S, Patterson, J, Variale, F and Iorwerth, H (2020) Decarbonising the Welsh housing stock: from practice to policy. Buildings and Cities, 1(01), 277–92.

Green, S D and Sergeeva, N (2020) The contested privileging of zero carbon: plausibility, persuasiveness and professionalism. Buildings and Cities, 1(01), 491–503.

Habert, G, Röck, M, Steininger, K, Lupísek, A, Birgisdottir, H, Desing, H, Chandrakumar, C, Pittau, F, Passer, A, Rovers, R, Slavkovic, K, Hollberg, A, Hoxha, E, Jusselme, T, Nault, E, Allacker, K and Lützkendorf, T (2020) Carbon budgets for buildings: harmonising temporal, spatial and sectoral dimensions. Buildings and Cities, 1(01), 429–52.

Hamstead, Z, Coseo, P, AlKhaled, S, Boamah, E F, Hondula, D M, Middel, A and Rajkovich, N (2020) Thermally resilient communities: creating a socio-technical collaborative response to extreme temperatures. Buildings and Cities, 1(01), 218–32.

Hoxha, E, Passer, A, Saade, M R M, Trigaux, D, Shuttleworth, A, Pittau, F, Allacker, K and Habert, G (2020) Biogenic carbon in buildings: a critical overview of LCA methods. Buildings and Cities, 1(01), 504–24.

Killip, G (2020) A reform agenda for UK construction education and practice. Buildings and Cities, 1(01), 525–37.

Klinsky, S and Mavrogianni, A (2020) Climate justice and the built environment. Buildings and Cities, 1(01), 412–28.

Kuittinen, M and Häkkinen, T (2020) Reduced carbon footprints of buildings: new Finnish standards and assessments. Buildings and Cities, 1(01), 182–97.

Lützkendorf, T (2020) The role of carbon metrics in supporting built-environment professionals. Buildings and Cities, 1(01), 676–86.

Lützkendorf, T and Frischknecht, R (2020) (Net-) zero-emission buildings: a typology of terms and definitions. Buildings and Cities, 1(01), 662–75.

Mayer, M (2020) Material recovery certification for construction workers. Buildings and Cities, 1(01), 550–64.

Parkin, A, Herrera, M and Coley, D A (2020) Net-zero buildings: when carbon and energy metrics diverge. Buildings and Cities, 1(01), 86–99.

Passe, U (2020) A design workflow for integrating performance into architectural education. Buildings and Cities, 1(01), 565–78.

Passe, U, Dorneich, M, Krejci, C, Koupaei, D M, Marmur, B, Shenk, L, Stonewall, J, Thompson, J and Zhou, Y (2020) An urban modelling framework for climate resilience in low-resource neighbourhoods. Buildings and Cities, 1(01), 453–74.

Patrick, M, Grewal, G, Chelagat, W and Shannon, G (2020) Planetary health justice: feminist approaches to building in rural Kenya. Buildings and Cities, 1(01), 308–24.

Roca-Puigròs, M, Billy, R G, Gerber, A, Wäger, P and Müller, D B (2020) Pathways toward a carbon-neutral Swiss residential building stock. Buildings and Cities, 1(01), 579–93.

Salter, J, Lu, Y, Kim, J C, Kellett, R, Girling, C, Inomata, F and Krahn, A (2020) Iterative ‘what-if’ neighborhood simulation: energy and emissions impacts. Buildings and Cities, 1(01), 293–307.

Schünemann, C, Olfert, A, Schiela, D, Gruhler, K and Ortlepp, R (2020) Mitigation and adaptation in multifamily housing: overheating and climate justice. Buildings and Cities, 1(01), 36–55.

Schiller, G, Gruhler, K and Xie, X (2020) Assessing the efficiency of indoor and outdoor access-related infrastructure. Buildings and Cities, 1(01), 56–69.

Schmidt, M, Crawford, R H and Warren-Myers, G (2020) Integrating life-cycle GHG emissions into a building’s economic evaluation. Buildings and Cities, 1(01), 361–78.

Schoenefeldt, H (2020) Delivery of occupant satisfaction in the House of Commons, 1950–2019. Buildings and Cities, 1(01), 141–63.

Simpson, K, Janda, K B and Owen, A (2020) Preparing ‘middle actors’ to deliver zero-carbon building transitions. Buildings and Cities, 1(01), 610–24.

Srivastava, M (2020) Cooperative learning in design studios: a pedagogy for net-positive performance. Buildings and Cities, 1(01), 594–609.

Steadman, P, Evans, S, Liddiard, R, Godoy-Shimizu, D, Ruyssevelt, P and Humphrey, D (2020) Building stock energy modelling in the UK: the 3DStock method and the London Building Stock Model. Buildings and Cities, 1(01), 100–19.

Steininger, K W, Meyer, L, Nabernegg, S and Kirchengast, G (2020) Sectoral carbon budgets as an evaluation framework for the built environment. Buildings and Cities, 1(01), 337–60.

Stevenson, F and Kwok, A (2020) Mainstreaming zero carbon: lessons for built-environment education and training. Buildings and Cities, 1(01), 687–96.

Tanguy, A, Breton, C, Blanchet, P and Amor, B (2020) Characterising the development trends driving sustainable neighborhoods. Buildings and Cities, 1(01), 164–81.

Waldman, B, Huang, M and Simonen, K (2020) Embodied carbon in construction materials: a framework for quantifying data quality in EPDs. Buildings and Cities, 1(01), 625–36.

Willand, N, Moore, T, Horne, R and Robertson, S (2020) Retrofit Poverty: Socioeconomic Spatial Disparities in Retrofit Subsidies Uptake. Buildings and Cities, 1(01), 14–35.